The lattice-isometric copies ofℓ∞(Γ)in quotients of Banach lattices

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The lattice copies of l1 in Banach lattices

It is known that a Banach lattice with order continuous norm contains a copy of l1 if and only if it contains a lattice copy of l1. The purpose of this note is to present a more direct proof of this useful fact, which extends a similar theorem due to R.C. James for Banach spaces with unconditional bases, and complements the c0and l∞-cases considered by Lozanovskii, Mekler and Meyer-Nieberg.

متن کامل

Isomorphic and isometric copies of l∞(Γ) in duals of Banach spaces and Banach lattices

Let X and E be a Banach space and a real Banach lattice, respectively, and let Γ denote an infinite set. We give concise proofs of the following results: (1) The dual space X contains an isometric copy of c0 iff X contains an isometric copy of l∞, and (2) E contains a lattice-isometric copy of c0(Γ) iff E contains a lattice-isometric copy of l∞(Γ).

متن کامل

∞(γ) in Quotients of Banach Lattices

Let E be a Banach lattice and let M be a norm-closed and Dedekind σ-complete ideal of E. If E contains a lattice-isometric copy of ∞ , then E/M contains such a copy as well, or M contains a lattice copy of ∞. This is one of the consequences of more general results presented in this paper. 1. Introduction. Let E be a locally solid linear lattice (Riesz space), for example , a Banach lattice, let...

متن کامل

Ideal of Lattice homomorphisms corresponding to the products of two arbitrary lattices and the lattice [2]

Abstract. Let L and M be two finite lattices. The ideal J(L,M) is a monomial ideal in a specific polynomial ring and whose minimal monomial generators correspond to lattice homomorphisms ϕ: L→M. This ideal is called the ideal of lattice homomorphism. In this paper, we study J(L,M) in the case that L is the product of two lattices L_1 and L_2 and M is the chain [2]. We first characterize the set...

متن کامل

Isometric Embeddings of Banach Bundles

We show in this paper that every bijective linear isometry between the continuous section spaces of two non-square Banach bundles gives rise to a Banach bundle isomorphism. This is to support our expectation that the geometric structure of the continuous section space of a Banach bundle determines completely its bundle structures. We also describe the structure of an into isometry from a contin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Mathematics and Mathematical Sciences

سال: 2003

ISSN: 0161-1712,1687-0425

DOI: 10.1155/s0161171203210528